14 research outputs found

    Application of unsteady aerodynamic methods for transonic aeroelastic analysis

    Get PDF
    Aerodynamic methods for aeroelastic analysis are applied to various flow problems. These methods include those that solve the three dimensional transonic small disturbance (TSD) potential equation, the two dimensional (2-D) full potential (FP) equation, and the 2-D thin layer Navier-Stokes equations. Flutter analysis performed using TSD aerodynamics show that such methods can be used to analyze some aeroelastic phenomena. For thicker bodies and larger amplitude motions, a nonisentropic FP method is presented. The unsteady FP equation is modified to model the entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. Pressures calculated on the NLR 7301 and NACA 64A010A airfoils using the nonisentropic FP method are presented. It is shown that modeling shock generated entropy extends the range of validity of the FP method. A Navier-Stokes code is correlated with pressures measured on a supercritical airfoil at transonic speeds. When corrections are made for wind tunnel wall effects, the calculations correlate well with the measured data

    Application of a full potential method to AGARD standard airfoils

    Get PDF
    One of the most important uses of method that calculate unsteady aerodynamic loads is to predict and analyze the aeroelastic responses of flight vehicles. Currently, methods based on transonic small disturbance potential aerodynamics are the primary tools for aeroelastic analysis. Flow solutions obtained using isentropic potential theory can be highly inaccurate and even multivalued, because they do not model the effects of entropy that is produced when shock waves are in the flow field. From the results that are presented, it is concluded that nonisentropic potential methods more accurately model Euler solutions than do isentropic methods. The primary effects of modeling shock generated entropy are: (1) to eliminate mulitple flow solutions when strong shock waves are in the flow field; and (2) to bring the strengths and locations of computed shock waves into better agreement with those calculated using Euler method and those measured during experiments

    Application of a nonisentropic full potential method to AGARD standard airfoils

    Get PDF
    An entropy-correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to model the entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Calculated results are presented for the NLR 7301, NACA 0012, and NACA 64A010A airfoils. Comparisons of the present method and solutions of the Euler equations are presented for the NLR 7301 airfoil, and comparisons of the present method and experimental data are presented for all three airfoils. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation. In addition, it is shown that modeling shock-generated entropy extends the range of validity of the full potential method

    Computational unsteady aerodynamics for aeroelastic analysis

    Get PDF
    This report summarizes the status of computational unsteady aerodynamics methods for aeroelastic analysis and makes recommendations for future research activities. The flight conditions for which various types of flows exist are described and the aeroelastic phenomena that can occur in those flight regimes are discussed. Some important aeroelastic problems of current interest are described, and the aerodynamic methods needed to analyze them are presented. The capabilities and limitations of existing unsteady aerodynamics methods are discussed. Computer resources required to perform aeroelastic analysis of various flight vehicle configurations are presented. Recommendations for future research are made, and schedules for completion of proposed research tasks are presented

    Advanced Propulsion Systems for Low-Cost Access to Space

    Get PDF
    NASA's Space Access Goal Ensure the provision of space access and improve it by increasing safety, reliability, and affordability. (1) The launch phase continues to be the highest risk period of any space mission. (2) Launch costs remain an obstacle to the complete utilization of space for research, exploration, and commercial purposes (3) Improving the Nation's access to space through the application of new technology is one of NASA's primary roles

    Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center

    Get PDF
    The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral-equations and finite-difference method for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite-difference solution of the transonic small-perturbation equation, the integral-equation program is given primary emphasis here because it is less well known

    CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999

    Get PDF
    These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft

    CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999

    Get PDF
    The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft

    Technology Requirements for the 21st Century: A NASA Perspective

    No full text
    This report provides an overview on the following:NASA Vision and Mission; Aeronautics Technology; Space Technology;and Education Programs
    corecore